6.1 -D- Spheres

• Formulas:

	A _L (Lateral Area)	$A_T = A_L + A_b$ (Only hemispheres have a base)
Spheres	$4\pi r^2$	
Hemispheres	$2\pi r^2$	$3\pi r^2$

 $\begin{array}{c|c} A_{L} = A_{T} \text{ Sphere} \\ \text{(Lateral Area)} \\ \hline 4\pi r^{2} \\ \end{array} \begin{array}{c} A_{T} = A_{L} + A_{b} \\ \text{(only hemispheres have a base)} \\ \hline 2\pi r^{2} + \pi r^{2} \\ \end{array}$

Ex 1: A Tennis ball has diameter 6 cm. What is its surface area?

A _L = A _T Sphere (Lateral Area)
 $4\pi r^2$

 $A_{T} = A_{L} + A_{b}$ (only hemispheres have a base) $2\pi r^{2} + \pi r^{2}$

Ex 2: A soccer ball with diameter 30 cm is placed tightly inside a cube box. Find the difference between their surface areas.

 $\begin{array}{c|c} A_{L=A_{T}} \text{Sphere} & A_{T} = A_{L} + A_{b} \\ \text{(Lateral Area)} & \text{(only hemispheres have a base)} \\ \hline & 4\pi r^{2} & 2\pi r^{2} + \pi r^{2} \end{array}$

Ex 3: How many times $\underline{\text{greater}}$ is the SA of the Sun than the

Earth?

d_s=1 391 000 km r = 695500

 d_E =12 756 km r = 6378

Practice: page 185 # 37 to 42

5